#### APPLICATION OF DEEP MACHINE LEARNING IN CYBERSECURITY

N. Kakumani, S. Tse, S. Muniz Advisor: Dr. Emamian



#### INTRODUCTION

## Cybercrime is one of the world's fastest growing threats to security.

- Unfortunately corresponds to our growing dependence on computer networks and information technology (banking software, autonomous vehicles, smart assistants - Siri, Alexa)
- An estimated \$6 trillion global cost by 2021 under the 2020 Official Annual Cybercrime Report by Cybersecurity Ventures

Silver Lining: New Deep Machine Learning Cybersecurity Tools...



Image Source: Security Info Watch

#### WHAT IS CYBERSECURITY?

- Cybersecurity is the practice of maintaining confidentiality, integrity and the availability of the data.
- Cybersecurity comprises of set of tools and techniques to protect the data/ information from various attacks.
- Most common types of cyber threats are Malware, Ransomware, Phishing attacks and Social Engineering.
- Companies spend nearly \$3.92 millions on data breaches.



#### WHAT IS MACHINE LEARNING?

- It is an application of artificial intelligence and it provides the ability for the system to automatically without any human intervention and trains the system to take decision with any external programming.
- Machine Learning methods are of 3 types:
  - Supervised learning
  - Unsupervised learning
  - Reinforcement learning



#### WHAT IS DEEP LEARNING?

- Subset of Machine Learning
- Takeaway features:
  - Scalability
  - Feature Training
- Deep refers to the number of layers involved
  - Deep Learning versus Shallow Learning
- Modeling inspired by the brain -> Artificial Neural Networks

#### **ARTIFICIAL INTELLIGENCE**

Programs with the ability to learn and reason like humans

#### **MACHINE LEARNING**

Algorithms with the ability to learn without being explicitly programmed

#### **DEEP LEARNING**

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

Image Source: Data Catchup

### WHAT ARE ARTIFICIAL NEURAL NETWORKS?

- Type of A.I. technology
- Based on how the neurons in the brain works
  - Consists of nodes
  - Input and output with hidden layers in between
- Can generate nonlinear models
- Requires more time and power as the task becomes more complex



Image Source: digitaltrends

# CIA TRIAD



#### SECURITY GOAL #1: CONFIDENTIALITY

- Confidentiality means protection of data or resources from unauthorized access.
- The hackers usually perform two types of extractions attacks and they are:
  - Model Extraction Attack: extracts the model parameters by sending queries to the model
  - Model Inversion Attack: attacks are carried out by finding the inputs that provide sensitive information from the training datasets when given as input to the models



#### SECURITY GOAL #1.1: PRIVACY

- Norton defines *privacy* as the rights to information, regarding its access and usage.
- Includes protection of the DL model itself and the training data
- Consider a HIPAA violation...



Image Source: Mercury News

### SECURITY GOAL #2: INTEGRITY

- Ensure that the data has not been tampered or compromised
- Ways to impact integrity
  - Modifying data
  - Unintentionally by using bad data
  - Removing data



### SECURITY GOAL #3: AVAILABILITY

- Availability is the ability of authorized users to access the system, network, and data at will. Interruption of this freedom is an availability attack.
- Example: Denial-of-Service Attack
- False Positives/Misclassifications in ML models



Image Source: Security Boulevard

#### DEEP LEARNING APPLICATIONS IN CYBERSECURITY

- Intrusion Detection/Prevention Systems
- Malware Detection
- Spam/Social Engineering Detection
- Network Traffic Analysis
- User Behavior Analysis

#### INTRUSION DETECTION/PREVENTION SYSTEMS

- Detect any unusual activity in the system.
- Traditional methods are unable to solve the complex problems
- High false positive and false negative detection rates.
- New techniques with artificial intelligence and computer intelligence were proposed.
- Laskov along with his team members developed an technique that gives 95% accurate results.



#### MALWARE DETECTION

- "Any type of malicious software designed to harm or exploit any programmable device, service or network."
- Static Analysis versus Dynamic Analysis
- Autoencoders in malware detection applications
  - Li Framework
  - DL<sub>4</sub>MD Model

#### Average annual cost of cybercrime by type of attack (2018 total = US\$13.0 million)



Figure ?: Average annual cost of cybercrime by type of attack, 2018-2019. From *Accenture Ninth Annual Cost of Cybercrime Study*, 2019.

### SPAM/SOCIAL ENGINEERING DETECTION

Detecting spam has become more • Twitter Data (Tweets) difficult, especially on social media **Raw Strings** Researchers are starting to use deep • Feature Extraction Word Vector learning to detect spam (Vectors) Learning Algorithm Ex: Twitter ٠ Learning Algorithm **High-Dimension** Old method: • Vector Feature Characteristic of the tweet • Classification Twitter Spam Blacklist ٠ Detection Time consuming Most would have already ٠ visited the site Syntax Analysis Feature Analysis Blacklist New Method: ٠ Vectors Tweet Account Shorted Tweet Social Deep learning Statistic Statistic URL Content Graph Info Info

#### NETWORK TRAFFIC ANALYSIS

- Monitor traffic activity patterns.
- IP address from unusual area is notified.
- Malware behavior is now difficult to detect.
- Especially zero-day attacks are most occuring and have to be prevented.
- A technique to detect the malicious and abnormal behavior was proposed using 3 model framework known as Robust Network Traffic Classification.



#### USER BEHAVIOR ANALYSIS



- "Searches for patterns of usage that indicate unusual or anomalous behavior"
- Capable of detecting:
  - Insider threats
  - Targeted attacks
  - Financial fraud
- Recurrent Neural Networks:
  - Tuor model for anomaly detection
  - Fake news detection

## USE CASES

- Internet of Things
- Ring Intrusion Detection
  Devices
- Android Malware Detection

### INTERNET OF THINGS (IOT)

- Billions of devices are connected using Internet of Things.
- IoT components are vast and hence the attack surface area is huge and the devices are easily vulnerable.
- Mirai Attack took down thoused of IoT devices.
- Narudin et al. proposed method to detect abnormal behavior in IoT devices.
  - K-NN model
  - Random Forest Model
  - Filtering of network traffic components.



### RING INTRUSION DETECTION DEVICES

- There's little research in deep learning for smart devices
- Cameras, smart cars, or voice controlled systems have a vulnerability in IDS
- Ex: Ring
  - There are some cases in which people had their Ring devices hacked.
    - Weak IDS
- To improve IDS in smart devices, adversary attacks are developed
  - To study it
  - To learn to defend against it



Image Source: ring

#### ANDROID MALWARE DETECTION

- Malware is one of the most common and dangerous threats to a computer system!
- Android, one of the best-selling operating systems worldwide, is even susceptible.
- Yuan et al. DL model for Android Malware Detection
  - Beyond the risk communication technique often adopted
  - Static and Dynamic analysis of 202 features
  - Max. Accuracy of 96.5%
  - DL model outperformed the following ML models: SVM, Naive Bayes, C4.5, Logistic Regression, and Multi-Layer Perceptron



Droid-Sec Framework Model. From *Droid-Sec: Deep Learning in Android Malware Detection*, 2014.

# THANK YOU! QUESTIONS?