### **Capstone Project**

100 TTOC CTO 00 AN ATO CCATO 00 DTO 200 TTO

AATAACCTTACTCCATAATOTCAA

## Automatic Health Monitoring Plat Form Using Deep Machine Learning Based On Zigbee Wireless Sensor

**Prepared By-**

Nahom G Ghebremeskel

Guided By -

Dr. Vahid Emamian



- develop a human health monitoring platform using deep machine learning and artificial intelligence (AI).
- Monitoring the health activity using wireless channel.
- Use an AI and deep machine learning platform to train the machine
- detect or predict heart disease from a collected data.













## DATA ACQUISITION

#### ELECTROCARDIOGRAM

- Electrocardiogram (ECG) signals in the healthcare field are used to **identify cardiac problems** in a patient.
- ECG signal is the **only way** by which the **heart condition can be detected** very accurately.
- All features of ECG are must be in **specific limit** if it is not then it calls abnormal signal or its **Arrhythmia**.

#### **Abnormalities Characteristics features**

- 1. Bradycardia Heart Rate < 60 BPM
- 2. Tachycardia Heart Rate > 100 BPM
- 3. First Degree AV Block QRS complex  $\leq$  0.1 Sec.
- Second Degree AV Block 0.1 Seconds ≤ QRS complex ≤ 0.2 Seconds





# Types of Rhythm Used

#### AD 8232 SINGLE LEAD HEART RATE SENSOR

- It receives/reads the electrical activity of the heart
- It is intended to extract, amplify, and filter small biopotential signals
- It makes a noisy conditions, such as those created by motion or remote electrode placement.

#### AD 8232 sensor Negative Feedback

- It might last like 5 seconds to stabilize.
- The bandwidth is too big.
- makes noise because of the muscle signal and any movement.
- The noise goes all the way to 1k Hz, and a normal ECG doesn't go more than 250.
- Large SNR .
- Placement of the ECG leads give different reading.





## ARDUINO UNO

- It is a microcontroller board based on Atmega 328p.
- Arduino has
  - 14 digital input/output pins.
  - 6 analog inputs.
  - 16 MHz quart crystal.
  - USB connection, a power Jack and an ICSP heard.
- It contains 6 channel 10 bit analog to digital converter.
- The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board.



#### Analog to digital conversion



## How Arduino ADC works

- It maps input voltages between 0 and 5 volts into integer values between 0 and 1023.
- It takes about 100 micro second to read an analog input.
- The maximum possible sampling rate is 9615 HZ



1 1 0 1 0 1 0 0 1 1

 $2^{10} = 1024$ 

| Resolution of the ADC $\_$ | $ADC \ Reading$         |
|----------------------------|-------------------------|
| System Voltage             | Analog Voltage Measured |

$$\frac{1023}{5.00V} = \frac{x}{2.12V}$$
$$\frac{1023}{5.00V} * 2.12V = x$$
$$x = 434$$

#### ECG READING AT THE ARDUINO IDE SERIAL PLOTER





## TRANSMISSION



### **TRANSMITTING ECG DATA**

- Collected data transmit over a wireless channel to the platform
- Zigbee is high level communication protocols used to create personal area networks.
- Zigbee is an IEEE 802.15.4 based communication protocol.

### ZIGBEE

- Based on IEEE 802.15.4 Standard
- Designed for sensor and control networks
- Used for applications that require:
  - Low Power Consumption
  - Low Data Rate
  - Long Range of distance



### Xbee S2C

- RF Data Rate: 250kbps
- Throughput speed: 35kbps
- Frequency: ISM 2.4GHz
- Specs OK Temp: -40 to 85C
- Digital I/O pins: 11
- Analog input pins: 4
- Mesh routable Self Healing network
- Firmware: ZB ZigBee
- Operating Voltage: 2.1 3.6V
- Operating Current: <u>40mA@3.3V</u>
- Indoor range: 40 Meters Line of sight range: 120 Meters Max
- Analog Pin Reading: 1.2V.







### Transparent operating mode (AT)

- Default xbee operate mode
- Data queued up for RF transmission
- Data is buffered in the DI buffer until
  - packetization Timeout
  - Maximum number of RF packet(100 byte)



#### Application programming interface (API) mode.

- An alternative to the AT operating mode
- host application can interact with the networking capabilities of the module
- It lets the user decide how many byte wat to transmit.
- A host application can send data frames to the module that contain address and payload
- In API mode all data entering the module can immediately transmit.

### **Creating API Frame**

| <ul><li><xbee.h></xbee.h></li><li>8 data bit</li></ul>                  |      | Start d<br>Leng | elimiter<br>gth (18) | 00 12                   |
|-------------------------------------------------------------------------|------|-----------------|----------------------|-------------------------|
| <ul> <li>Convert 10 bits into two bytes</li> <li>MSB and LSB</li> </ul> | Fram | ne Type         | 10                   |                         |
|                                                                         | Fra  | ame ID          | 01                   |                         |
|                                                                         |      | 64 bit dest. a  | address              | 00 13 A2 00 41 84 FB 3D |
| Ad 8232<br>Out put<br>2.74 V                                            |      | 16 bit dest. a  | address              | FF FE                   |
|                                                                         | ut 0 | 1 0 1 0 0       | 1 1                  | 53                      |
|                                                                         | 0    | 0 0 0 0 0       | 1 1                  | 03                      |
|                                                                         |      | ch              | ecksum               | 2D                      |

76

#### Extracting API frame at the receiver

| • <xbee.h></xbee.h>                                                    | Start delimiter      | /E                      |
|------------------------------------------------------------------------|----------------------|-------------------------|
| <ul> <li>8 data bit</li> <li>Convert two bytes into 10 bits</li> </ul> | Length (18)          | 00 12                   |
| <ul> <li>Combine MSB and LSB</li> </ul>                                | Frame Type           | 10                      |
|                                                                        | Frame ID             | 01                      |
|                                                                        | 64 bit dest. address | 00 13 A2 00 41 84 FB 3D |
| Process unit                                                           | 16 bit dest. address | FF FE                   |
| 951                                                                    | 0 1 0 1 0 0 1 1      | 53                      |
|                                                                        | 0 0 0 0 0 1 1        | 03                      |
|                                                                        | checksum             | 2D                      |





## PROCESSING PLATFORM

#### **PROCESSING PLATFORM**

- 1. Collecting the received data.
- 2. Data is processed using Deep neural network.



#### CONNECT ARDUINO TO MATLAB

#### Hardware Support Packages



📣 Installed

#### MATLAB Support Package for Arduino Hardware

Acquire inputs and send outputs on Arduino boards

3998 Downloads 📵 🔺

Installed

#### Simulink Support Package for Arduino Hardware

Run models on Arduino boards.



#### RECIEVED ECG SIGNAL REAL TIME MATLAB PLOTER



#### Collecting the received ECG data using MATLAB

- We use MATLAB to read the received ECG data from the Arduino through serial communication.
- Use to store the reading data for an interval of time at a sampling frequency of 43 samples per second in the form .csv format.
- Plotting the received ECG signal in real time.





### TRAINING OUR PLATFORM USING DEEP LEARNING NEURAL NETWORK

- Physio Bank datasets will use to distinguish normal and abnormal ECG signals
- Convolutional Neural Network (CNN) to detect various arrhythmias in arbitrary length ECG dataset.
- Our platform will be trained using deep neural network with Physio Bank dataset.
- To implement CNN I may use MATLAB or Python (TensorFlow)







#### **Data Pre-Process**

- The MIT-BIH database contains approximately 110,000 ECG beats with 15 different types of arrhythmia including normal.
- We used 7177 Normal beat ECG Images (class 0), 8917 Paced rhythm ECG images (class 2) and 472 Other rhythm ECG images (class 1).
- Convert the ECG signal into image using python.



### ECG signal into ECG Beat segments images

- detected the R-peaks in ECG signals using <u>Biosppy</u> module of Python.
- took the present R-peak and the last R-peak,
- took half of the distance between the two and included those signals in the present beat.
- converted these segmented signals into images using <u>Matplotlib</u> and <u>OpenCV</u>.





### ECG Image data set



- We used 7177 Normal beat ECG Images (class 0), 472 Other rhythm ECG images (class 1) and 8917 Paced rhythm ECG images (class 2).
- Processed data Augmentation for training set.
- After data augmentation and K fold cross validation, the proposed CNN algorithms used 953360 ECG beat images for training and 238340 ECG beat images for validation.

#### **Architecture for CNN Model**



#### **Convolutional Neural Network Layers**

- We used an ECG image with 200 X 200 x 1 input dimension of the network.
- We used 24 hidden layers.
- The ReLU function was used to activate each hidden layer .
- batch normalization was used to normalize the input layer by adjusting and scaling the activations.



### RESULTS



### RESULTS



