
Deep Learning Algorithms for 
Android Malware Detection 

Ouda Adomuha1, Alalmai M. Abdulhadi1, Alqahtani S. Ibrahim1,  
Ferenczi Tamas1, Garza I. Jose1  

Vahid Emamian2, Senior IEEE Member  
1Computer Science Department  

2Electrical Engineering Department  
St. Mary’s University, San Antonio TX  

aouda@stmarytx.edu 
 
 
 

Abstract 

Malware on android devices were discussed as a growing threat to security. Deep learning was 
introduced as a more effective approach to dealing with this problem. Static, dynamic and hybrid 
deep learning approaches in the analysis of malware were discussed along with several 
algorithms known till date. Several literatures were reviewed and analyzed to inform the 
efficiency and accuracy of various algorithms. It was quickly discovered however that based on 
different factors; implementation could vary. Some challenges were identified and concluded 
that though this approach to malware detection is more effective than traditional malware 
detection software, there is more work to be done in order to maximize its potential.   
 

1.0 Introduction 

Android, an open source software designed for mobile devices such as smartphones and tablets 
with primarily touchscreen as input interface has grown exponentially in the last decade. This 
growth has been a catalyst for the increased rate of malware attacks on these types of systems. 
Android malware is a common problem in today's phones and apps. It is getting harder to 
monitor and find all malware with human effort. Since traditional antivirus software have been 
deficient at tackling the dynamic nature of attacks on them, deep learning was introduced and 
discovered to be a better approach in dealing with this challenge. Deep learning, a form of 
machine learning has been discovered to make this task easier. It conducts a profound 
classification and improves its accuracy because deep learning identifies more features than 
conventional machine learning methods by passing through many levels of feature extraction. 
This enables deep learning models to acquire a new pattern of malware after the basic training 
phase. There are security and accuracy problems that arise with deep learning. The Google app 
store uses a malicious application detection system called Bouncer. It is said to be effective but 
there have been errors with it that let malicious app on the to store. Other stores like the Android 
Play-Store uses data from users like rating and comments, but it takes time to detect the 
malicious software which can do harm in the meantime. The bad guys try to hide their malware 
by using different methods like code obfuscation technique, encryption, including permissions 



which are not needed by the application, requesting for unwanted hardware, download or 
update attack in which a benign application updates itself or another application now with 
malicious payload.  Trying to manually check apps to see if it is malicious or not and relying on 
bad software detection has led to the need to machine learning. There 3 types of analysis static 
dynamic, hybrid. Static analysis is done without running an application. Some examples of static 
features include, permissions, API calls which can be extracted from the AndroidManifest.xml 
file. Dynamic analysis deals with features that were extracted from the application while running, 
including network traffic, battery usage, IP address. The third type of analysis is hybrid analysis 
which combines the features from static and dynamic techniques.  
 

1.1 Android Application Components  

Android applications are made in Java and C++. Every application is managed by XML descriptor 
document called AndroidManifest.xml. The Android Manifest document contains about the 
applications made for android. These applications comprised of four parts: Activity, Service, 
Content Provider, and Broadcast Receiver. The way android works is that it has four layers. They 
manage the system from hardware sensors to user apps. Each layer does something specific for 
apps and different functions. The first layer is the Linux Kernel. It helps the OS services and 
manages the hardware’s functions like memory, power, drivers, network stack, security settings, 
shared libraries and hardware abstraction. The second layer is the native library. It has native 
libraries which help manage data processing. This layer has open source libraries, such as surface 
manager, media framework, SQLite, Webkit, OpenGL—ES, FreeType, and SSL. These libraries do 
things like composing windows on the screen, processing input and output of video and audio 
data, database operations, supporting web browsers, high performance 2D and 3D graphics, 
fonts support, services of SSL and TLS protocols. The third layer is the Application Framework. 
This layer includes the Android APIs. This layer works with running apps and helps manages the 
basic functions on the device. The programs in this layer are activity manager, content provider, 
telephony manager, location manager, and resources manager. Each of these managers do a 
specific task and do not interfere with each other. The fourth layer is the Application Layer. This 
layer is on the top of the stack. The application layer helps in making calls, managing contacts, 
sending messages, and browsing web. In this layer there are a set of core applications, such as 
email client, calendar, browser, maps, contacts, SMS program, gallery. 
 

1.2 Android Malware Detection Techniques 

Mobile phones are a sensor-based event system, which permits malware to respond to 
approaching SMS, position changes and so forth, increasing the sophistication of automated 
malware-analysis techniques. Apps can use services, activities, and integrate varied programming 
languages in one application. 
 

1.2.1 Static Analysis 

This type of analysis scans an app without running it. It looks for obvious and distinct signs of 
malware, so it falls short to recognize the variation or unidentified malware. It also looks for 
permissions an app wants to determine if it is malware. The drawbacks of static analysis are the 



missing of real execution paths and suitable execution conditions. Additionally, there exist 
problems in the occurrence of code obfuscation and dynamic code loading. 
 

1.2.2 Dynamic Analysis 

 
Dynamic analysis technique includes the execution of the application on either a virtual machine 
or a physical device. While examination, the behavior of the application is watched and can be 
dissected. The principle objective of the analysis is to achieve high code inclusion since every 
feasible event ought to be activated to watch any possible malicious behavior. 
 

1.2.3 Hybrid Analysis 

The hybrid analysis technique includes consolidating static and dynamic features gathered from 
examining the application and drawing data while the application is running.  
 

2.0 Related Work 

Several works have been done to understand how deep learning can be used to address the 
problem of malware infestation in android devices. Among them are a few listed below.  
Chen, T. et al used Deep Neural Network (DNN) in a multimodal approach to malware detection 
and classification in smart phone devices to solving the problem of malware detection that 
involves the incorporation of different features.  
Markel, Z. and Bilzor, M in their research, conducted a study to determine the efficiency and 
accuracy of using DNN to detect malware in android devices where DNN algorithm-based 
approach achieved an accuracy level of 95.31%. Martin, A. et al also conducted a study on the 
use of deep neural networks architecture to identify and classify malware classification  
Hsien-De Huang, T. and Kao, H. Y in 2018 sought to develop a convolutional neural network 
system that could learn to detect malware in android devices without having to first extract 
features.  
Baskaran B. and Ralescu A. identified the update attack as the most difficult intrusion technique 
and therefore used a review of existing literature to determine the best approach to address this 
challenge. Several types of malware were discussed and ways to defend against them. B. 
Baskaran and A. Ralescu talks about different ways and methods to scan and monitor apps. There 
three types of analysis are static dynamic, hybrid. Static analysis is done without running an 
application. Some examples of static features include, permissions, API calls which can be 
extracted from the AndroidManifest.xml file. Dynamic analysis deals with features that were 
extracted from the application while running, including network traffic, battery usage, IP address. 
The third type of analysis is hybrid analysis which combines the features from static and dynamic 
techniques. However, with the update attack, it was concluded that it is best to compare old 
version product with the new version so as to determine if the exist concerns to be addressed.  
Saif D. et all also sought to develop a program that would help detect and classify malicious 
applications in android devices. From 2010 to 2018 many different anti malware applications 
were developed. These app used either static, dynamic, or both ways to identify malware. Finally, 



in 2018 Hui-Juan Zhu et developed an 88.26% accuracy, 88.40% sensitivity and 88.16% precision 
software to detect malware.  
Alatwi A. H et al utilized features of benign applications to detect malware by relating the feature 
requested to the common feature of its classification. It therefore proposed a category-based 
machine learning classifier to enhance performance of classification models knowing that apps 
within the same category have a common set of features such as permissions, APIs, intents and 
filters among other features.  
Huang, H. et al sought to develop an android malware detection system that could ensure that 
the cyber security of android smartphones was maintained.  Chen T. et al Observed that malicious 
people were easily able to inject malware into android systems successfully without the malware 
being detected through the use of code obfuscation.  
S. Wang et al perform text-like segmentation and vectorization on URLs to analyze malware using 
network traffic. The work utilized a multi-view neural network to implement deep and broad 
discriminative feature learning that addresses the feature selection difficulty in malware 
detection via network traffic. To evaluate different influential factors, multi-group experiments 
were performed on malware detection mode.  
Ganesh M. et al also proposed a convolution neural network based android malware detection 
system and identified its main challenge as the high false detection rate. Wang W. et al proposed 
a hybrid model that include the deep auto encoder and the convolutional neural network deep 
learning algorithms to detect android malware. 
Park et al (2020) show malware and adware used to infect self-driving vehicle that use the 
Android OS. This approach used a machine learning based intrusion detection module combined 
with a machine learning algorithm where accuracy and speed are critical. 
 

3.0 Deep Learning Algorithms for Malware Detection 

Six deep learning algorithms discussed by literature as possible solutions to deep learning for 
android malware detection and classification are: deep neural network (DNN), restricted 
Boltzmann machine (RBM), convolutional neural network (CNN), deep belief network (DBN), 
recurrent neural network (RNN), and the deep autoencoder.  
When evaluating the strengths and weaknesses of these deep learning algorithms, The reading 
considers the accuracy of the algorithm, the computational power required to support the 
running of the algorithm, the time spent training the algorithm, the size of data sets used to train 
the algorithm, and the ability of the algorithm to be used under various circumstances or 
applications. The reading also considers the level of difficulty when training the algorithm, and 
the number of variations that exist for a given algorithm.  
The major strength of the DNN is that it has been used in different applications. However, its 
weakness is that its training consumes a lot of time. The major strength of the RBM is that it can 
be used as a feature extractor for the other algorithms. However, its weakness is that its training 
is time consuming, and it also requires a lot of computational power. CNN’s major strength is that 
it has many variations. However, it needs a large data set to train. The major strength of DBN is 
that it has a layer by layer learning approach. However, this gives it the weakness of requiring a 
lot of computational power, and time consumption during training. The major strength of the 
RNN is that it can remember serial events, however, the learning process has the problem of 



vanishing gradient. The major strength of the deep autoencoder is that it has numerous 
variations and can be used together with other algorithms to create a hybrid. However, it lacks 
the ability to determine pertinent data.  
According to authors, the review of the different deep learning algorithms that can be used or 
that have been proposed as solutions to deep learning malware detection in android devices was 
the first of its kind, although there are other related reviews. The aim was to fill the existing gaps 
in the literature regarding the use of deep learning to detect and classify malware in android 
devices. 
 

4.0 Methodology 

The data was collected by determining the relevant information from the literature, then listing 
the keywords to be used in the search process for the repositories. After the search results, 
exclusion criteria are applied to confine the review of the pertinent papers. An inclusive list of 
reviews is made from the collected papers. The search keywords are summarized as deep 
learning malware detection and analysis. Other learning strategies applied include the 
convolutional neural network in Android malware analysis; deep belief network in Android 
malware analysis; recurrent neural network in Android malware analysis. The search database 
repository probe finds significant publications such as Web Knowledge and Science Direct. 
Among the criteria used for exclusion to find only relevant results include finding papers 
published in a non-English language, those published in their final versions, duplicated papers, 
and those using deep-learning for malware detection in Windows. 
 

5.0 Review of Literature Analysis  

Various studies have been conducted in regards to malware detection for android devices. A 
static analysis using a malware identification system utilizing the deep learning method attained 
an accuracy of 97.4%. This approach is designed to seek permission from other apps and 
converting permission into image files. With an accuracy of 93% on unbalanced data, it is evident 
that deep learning offers an exact and extensible solution for Android malware since it relies on 
patterns to determine the malware.    
The malware detection system, DeepFlow builds on data streams in malignant apps that may 
contrast the original ones. The contrasts are used to distinguish novel apps using a deep learning 
model. An alternative method would be to apply API calls that occurred similarly to the small 
code. A different approach to detecting malware is through CNN. In this approach, the features 
are gained from raw data and malware signatures are eliminated.  
Other detection models include the MalDozer that depends on an artificial neural network to 
identify the malware. The color compounded convolution neural network-based AMD depends 
on color representation to translate images and decode the malware. The DeepRefiner malware 
characterization uses deep neural networks with several hidden layers to automate feature 
extraction. This is also seen in DroidDeep. 
Other models of malware detection include dynamic analysis such as natural language processing 
techniques, and Deep4MalDroid; and the hybrid analysis such as Droidsec and DDfender. 



Hou et al (2016), carried out a study whose purpose was to propose a deep learning model that 
could detect malware in android devices that was difficult to detect in other devices. The 
proposed method used hybrid analysis, since it included features of both static analysis and 
dynamic analysis. It used the extracted Linux kernel system calls. The name of the proposed 
model was Deep4MakDroid. The experimental results of the model however showed that it 
performed relatively less accurately compared to other models. The experimental results showed 
that the proposed model was able to outperform all the other models which it was compared 
with, based on efficiency and accuracy. 
Yuan et al (2014), conducted a study to devise a machine learning method that could detect 
android malware devices. The researchers used a machine learning method that utilizes more 
than 200 features, using both static and dynamic analysis. The authors appreciated the fact that 
android malware were being developed at a rate that the traditional detection methods could 
not keep up. Experimental results of the proposed method showed that the proposed malware 
detection model had an accuracy level of 96%. 
Kim et al (2018), conducted a study whose objective was to propose a novel framework for 
android malware detection. The researchers used a multimodal approach, which they touted as 
the first of its kind, and that would revolutionize android malware detection. The research used 
the deep neural networks, and the model was tested on a sample size of 41,260 applications. The 
experimental results of the model however showed that it performed relatively less accurately 
compared to other models. 
Su et al (2016), sought to create a model that would be able to use machine learning technology 
to detect new software that was not yet registered in databases, and determine whether it was 
benign or not. The researchers evaluated the proposed model (DroidDeep) against a data set of 
a total of 7972 samples. Half of the sample was made of malicious software. The experimental 
results showed that the model had a high runtime efficiency and a detection accuracy of 99.4%. 
McLaughlin et al (2017), also conducted a study to propose a deep learning method for android 
malware detection. The proposed model used a convolutional neural network deep learning 
algorithm in order to create the proposed model. The convolutional neural network used static 
analysis on raw opcode sequence to detect android malware. The results of the study showed 
that the model was able to scan large number of files accurately and efficiently on a GPU. 
Karbab et al (2017), conducted a study to propose a model for detecting android malware using 
deep learning on API methods sequence. The proposed model used an API methods sequence to 
classify applications and in the process identify malware applications. The name of the proposed 
model was MalDozer. The researchers used sample sizes that consisted of datasets of between 
1k-33k malware, and 38k benign apps to detect malware. The experimental results showed that 
the proposed model had an accuracy of 96-99% when classifying software. The experimental 
results also showed that the model had a false positive rate of 0.062% - 2%, on the tested data 
set. 
Li D. et al (2018), conducted a study to determine a model that would follow a fine-grained 
android malware detection. The proposed model followed a static analysis, and compared it with 
other methods in its experimental stages. The experimental results showed that the proposed 
model has an accuracy level of 97%, and a false positive rate of 0.1%. 
Pektaş et al (2020), conducted a study with the objective to propose a method for effective 
android malware detection using API call graph embedding. The researchers used the API call 



graph to represent the possible execution paths. Also, to achieve the objective, the researchers 
combined all parameters to ensure the best combination of hyper-parameters. The experimental 
results of the proposed model had an accuracy level of 98.86%, an accuracy of 98.65% in F-
measure, 98.47% in recall, and 98.84% precision. 
Li W. et al (2018), in their research proposed an android malware detection approach using 
weight adjusted deep learning. The algorithm that was used to develop the model was deep 
neural networks. The model used a characterization and identification approach. However, the 
proposed model had an accuracy level which was relatively lower than other methods proposed 
by literature. The accuracy level of the proposed model was 90%. 
Xu et al (2018) conducted a study to propose an android malware detection system based on 
deep learning that uses CFG and DFG. In the study, the algorithm used was convolutional neural 
networks. In order to detect the malware applications, the proposed model used semantic graphs 
to characterize android applications. In order to experiment the proposed model, the researchers 
used arvin, Drebin, VirusShare and ContagioDump datasets. The experimental results showed 
that the proposed model performed better than some previous studies and many anti-virus tools 
gathered in VirusTotal. 
Saif et al (2018), conducted a study to propose a model that they could use to detect and classify 
malicious applications in android devices. The research used the deep belief network to create 
the model. The experimental results of the proposed model showed an accuracy level of 99.1%. 
Chen et al (2019), also conducted a study in order to create a novel Android malware detection 
system that would detect malware that was novel and not yet recorded in databases. The 
research used the deep belief network in order to create the proposed model. The experimental 
data used had a total of 15,000 applications. The results of the experiment showed that the 
proposed model had an accuracy level of 99.10% - 99.40%, in detecting malicious software. 
Su et al (2020), also designed a model to detect malware in android devices using a deep belief 
network. The proposed model collected data from 11 different static behavioral characteristics. 
The researcher then experimented with the performance of the proposed model comparing with 
others already proposed by previous studies. The results of the study showed that the proposed 
system had an accuracy level of 99.4%. 
Wang et al (2019), conducted a study to propose an android detection malware software. The 
researchers approached the research problem by developing a hybrid model that was a hybrid 
between autoencoder and convolutional neural network. The deep learning algorithm was 
trained used a total of 23,000 software, where 13,000 of these were malicious software. The 
experimental results showed that the proposed model had an accuracy level that was 5% higher 
than other models that used SVM. 
Ganesh et al (2017), proposed a model that used a convolutional neural network-based android 
malware detection system. The researchers sought to use the algorithm to classify different 
software and therefore detect the malicious software. In order to determine the efficacy of the 
proposed model, the researcher used data that had 2500 android software. The experimental 
results of the proposed model had an accuracy level of 93%. 
Hasegawa et al (2018), also conducted a study to propose a model that would be used to detect 
android malware, while at the same time overcoming the problem of having to deal with the 
limited computation power of most android devices. To overcome this problem, the researcher 
proposed a one-dimensional convoluted neural network. The researchers then experimented 



with the performance of the proposed model using a data set of 7,000 software, where 5,000 of 
them were android malware. The experiment results showed that the proposed model had an 
accuracy level of 95.40-97.04%. 
Markel et al (2014), conducted research with the aim of proposing a model that would use the 
deep neural network algorithm to detect malware in android devices and to determine the 
efficiency and accuracy of using a deep neural network to detect such malware. The researchers 
then experimented with the study and compared its performance with the performance of other 
models that had been previously discussed by literature. The proposed algorithm had an accuracy 
level of 95.31%. This accuracy level was higher than the other models that it was compared to in 
the specific research. 
Chen et al (2019), also conducted a study with the aim of proposing a model that would solve the 
problem of malware detection of most novel malware evading detection by using complex 
features. The researchers proposed a model that uses the deep neural network algorithm to 
detect Android malware. The proposed model was experimented on using a data set that had 
41,260 samples. The accuracy level of the proposed model was higher than the other models. It 
had an accuracy level of 99.10% - 99.40%. 
Martín et al (2017), also set out to propose a model that would detect android malware using 
the deep neural networks architecture. The proposed model would classify and identify the 
malware, based on the extract features of the malware. The accuracy of the proposed model was 
improved by using a new parameter architecture and genetic algorithm. The researchers then 
conducted a study to determine the performance of the proposed model. The experimental 
results showed that the proposed model had an accuracy level of 91%. 
Mohammed et al (2020) made DL-Droid which is a deep learning system to detect malicious 
Android applications. It uses dynamic analysis using stateful input generation. They did tests on 
over 30,000 applications. Experiments were done to compare the detection performance and 
code coverage of the stateful input generation method with the commonly used stateless 
approach using the deep learning system. According to (2) DL-Droid can achieve up to 97.8% 
detection rate using dynamic analysis only and 99.6% detection rate with dynamic and static 
analysis. 
Dali et al (2017) developed DeepFlow, the results show a high detection F1 score of 95.05%, 
outperforming traditional machine learning-based approaches, which reveals the advantage of 
deep learning technique in malware detection. 
The figure below depict the work done by Akandwanaho and Kooblal in 2019 at The African 
Journal of Information and Communication (AJIC) using the neural network ensemble and metric 
algorithm (NNE-MA) in combination with other proven techniques at the time to include the 
generic algorithm (GA), ant colony optimization (ACO), and particle swarm optimism (PSO) 
algorithms. NNE-MA showed to produce less errors than the existing techniques at the time. 



 
Ref - Akandwanaho, S. M. , & Kooblal, M. (2019) 
 
Zhong et al discussed Multi-level deep learning system (MLDLS) as mapped out in five phases that 
heavily involve MapReduce. It detects malware with high accuracy and remove anomalies. In 
2019, MDLS excelled in true and false positive rates, construction and comparison time when 
experimented. The figure below shows a graphical representation of the result 

 
Ref – Chen et al (2019) 
 
Fang et al (2020) conducted an experiment using DeepDetectNet vs RLAttackNet where Portable 
Executive (PE) malware detection and the use of Generative Adversarial Network (GAN) to 
upgrade PE malware detection, and by combining both; levels of security were astonishing. The 
figure below is a representation of the outcome of this experiment 



 
Fang et al (2020) 
 
Choi et al (2020) discussed a deep learning-based model utilizing an attention based method, the 
accuracy of attention out performed long short-term memory (SC-LSTM) and Convolutional 
neural network (CNN), with an accuracy of 12% & 5% higher. They presented the chart below 
showing accuracy as a function of length of sequence. 

 
Ref - Choi et al (2020) 



 
Ye et al (2018) found the results of using a heterogeneous deep-learning frame work that includes 
an AutoEncoder and a layer of associative memory to detect unknown malware by way of pre-
training and fine-tuning. The figure below shows how malwares are identified 
 

 
 
Ref - Ye et al 
 

The following table shows a summary of the different algorithms used and their accuracy levels 

Researchers Methodology and or Deep 
Learning Algorithm Used  

Findings/Accuracy 

Hou, Saas, Chen and Ye 
(2016) 

Dynamic analysis, using the 
extracted Linux kernel 
system calls. 

The proposed model 
(Deep4MakDroid) was able to 
outperform other malware 
detection software. 

Yuan, Lu, and Wang 
(2014) 

Used a machine learning 
method that utilizes more 
than 200 features, using both 
static and dynamic analysis.  

The malware detection had an 
accuracy level of 96%.   

Kim, Kang, Rho, Sezer 
and Im (2018).  

- Used a multimodal 
approach and was the first 
of its kind. 
- Performance evaluated on 

41,260 samples. 
- Used deep neural networks 

models   

The performance and accuracy 
were relatively lower compared 
to other models  



Su, X., Zhang, D., Li, W., & 
Zhao, K. (2016) 

- Used a detection approach 
(DroidDeep). 
- The performance 

evaluated on a total of 
7972 samples  

- High runtime efficiency 
- A detection accuracy of 99.4%  

McLaughlin, N., Martinez 
del Rincon, J., Kang, B., 
Yerima, S., Miller, P., 
Sezer, S., ... & Joon Ahn, 
G. (2017) 

- Used the Convolutional 
neural network  
- Based on static analysis on 

raw opcode sequence.  

- File was able to scan large 
number of files accurately and 
efficiently on a GPU.  

Karbab, E. B., Debbabi, 
M., Derhab, A., & 
Mouheb, D. (2017) 

- API methods sequence 
- Proposed MalDozer, which 

uses sequence 
classification  
- Used various datasets of 

between 1k-33k malware, 
and 38k benign apps to 
detect malware  

- Has an accuracy of 96-99% when 
classifying software  
- Has a false positive rate of 

0.062% - 2%, on the tested data 
set.  

Li, D., Wang, Z., & Xue, Y. 
(2018)  

 Deep Neural Network - Has an accuracy level of 97%  
- Has a false positive rate of 0.1%  

Pektaş, A., & Acarman, T. 
(2020). 

- Used the API call graph to 
represent the possible 
execution paths.  
- Combined all parameters 

to ensure the best 
combination of hyper-
parameters  

- Results from the experiments 
show an accuracy level of 
98.86%, an accuracy of 98.65% 
in F-measure, 98.47% in recall, 
and 98.84% in precision.  

Li, W., Wang, Z., Cai, J., & 
Cheng, S. (2018).  

- Deep neural networks  
- Used a characterization 

and identification 
approach 
- Experimented on the 

efficacy of the model using 
237 features  

- Accuracy relatively lower than 
other methods proposed by 
literature 

- Accuracy level was 90%  

Xu, Z., Ren, K., Qin, S., & 
Craciun, F. (2018) 

- The algorithm used was 
convolutional neural 
networks  

- Used semantic graphs to 
characterize android 
applications  

- Used arvin, Drebin, 
VirusShare and 
ContagioDump datasets to 

- Performs better than Yeganeh 
Safaei et al.’s approach, Allix et 
al.’s approach, Drebin and 
many anti-virus tools gathered 
in VirusTotal,   



experiment the proposed 
model  

Markel, Z., & Bilzor, M. 
(2014) 

Deep Neural Networks 95.31 

Martín, A., Fuentes-
Hurtado, F., Naranjo, V., 
& Camacho, D. (2017) 

Deep Neural Networks 91% 

Hasegawa, C., & Iyatomi, 
H. (2018) 

Convolutional Neural 
Network 

95.40-97.04% 

Wang, W., Zhao, M., & 
Wang, J. (2019). 

Convolutional Neural 
Network 

5% higher than other models that 
used SVM 

Ganesh, M., Pednekar, 
P., Prabhuswamy, P., 
Nair, D. S., Park, Y., & 
Jeon, H. (2017) 

Convolutional Neural 
Network 

93% 

Su, X., Shi, W., Qu, X., 
Zheng, Y., & Liu, X. (2020) 

Deep Belief Network 99.4% 

Chen, T., Mao, Q., Lv, M., 
Cheng, H., & Li, Y. (2019) 

Deep Neural Networks 99.10% - 99.40% 

Saif, D., El-Gokhy, S. M., 
& Sallam, E. (2018) 

Deep Belief Network 99.1% 

Mohammed K. Alzaylaee, 
Suleiman Y. Yerima, Sakir 
Sezer (2020) 

Dynamic analysis using 
stateful input generation 

97.8% - 99.6% 

Dali Zhu, Hao Jin, Ying 
Yang, D. Wu and Weiyi 
Chen (2017) 

 95.05% 

 

5.1 Discussion 

It is evident there have been several research into the application of deep learning in the 
detection of malware in android devices. The adoption of this technique however is dependent 
on several factors to include time, complexity of need and cost. For example, the decision to 
implement static, dynamic or hybrid analysis approach is solely dependent on the need of the 
administrator and complexity of the platform involved. Various algorithms were presented with 
different strengths and weaknesses. These algorithms also come with different accuracy levels. 
Since deep learning uses artificial intelligence by training models, available dataset becomes 
another critical component to be put into consideration when selecting the algorithm to 
implement. Time of training is also important to consider as some models expend more time 
during training compared to others. The one thing that is certain is the fact that this scheme has 
proven to be astronomically more effective in detecting malware when compared to traditional 
malware detection software. 
 



5.2 Challenges and Open Issues 

A number of open issues exist with the most technical being availability of enough datasets for 
the training of any model to be implemented. It is also of utmost importance to deal with the 
time involved in the training of these models. Concept drift is a concern as it applies to the rapid 
growth we are experiencing, security issues with deep learning, and data privacy preservation. 
 

6.0 Conclusion 

With this review of the use of deep learning in Android malware detection, a comparison of 
available work was presented. This review identified knowledge gaps and highlight challenges, 
and open issues that should be considered in future work. It was shown that deep learning 
methods are subject to various adversarial attack, concept drift remains a challenge, and that 
static analysis have dominated the existing work. Generally, the result of this work can aid to 
promote research in Android malware detection and maybe answer the question of which model 
is the best to implement. 
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