
Deep Learning Algorithms for
Android Malware Detection

Ouda Adomuha1, Alalmai M. Abdulhadi1, Alqahtani S. Ibrahim1,
Ferenczi Tamas1, Garza I. Jose1

Vahid Emamian2, Senior IEEE Member
1Computer Science Department

2Electrical Engineering Department
St. Mary’s University, San Antonio TX

aouda@stmarytx.edu

Abstract

Malware on android devices were discussed as a growing threat to security. Deep learning was
introduced as a more effective approach to dealing with this problem. Static, dynamic and hybrid
deep learning approaches in the analysis of malware were discussed along with several
algorithms known till date. Several literatures were reviewed and analyzed to inform the
efficiency and accuracy of various algorithms. It was quickly discovered however that based on
different factors; implementation could vary. Some challenges were identified and concluded
that though this approach to malware detection is more effective than traditional malware
detection software, there is more work to be done in order to maximize its potential.

1.0 Introduction

Android, an open source software designed for mobile devices such as smartphones and tablets
with primarily touchscreen as input interface has grown exponentially in the last decade. This
growth has been a catalyst for the increased rate of malware attacks on these types of systems.
Android malware is a common problem in today's phones and apps. It is getting harder to
monitor and find all malware with human effort. Since traditional antivirus software have been
deficient at tackling the dynamic nature of attacks on them, deep learning was introduced and
discovered to be a better approach in dealing with this challenge. Deep learning, a form of
machine learning has been discovered to make this task easier. It conducts a profound
classification and improves its accuracy because deep learning identifies more features than
conventional machine learning methods by passing through many levels of feature extraction.
This enables deep learning models to acquire a new pattern of malware after the basic training
phase. There are security and accuracy problems that arise with deep learning. The Google app
store uses a malicious application detection system called Bouncer. It is said to be effective but
there have been errors with it that let malicious app on the to store. Other stores like the Android
Play-Store uses data from users like rating and comments, but it takes time to detect the
malicious software which can do harm in the meantime. The bad guys try to hide their malware
by using different methods like code obfuscation technique, encryption, including permissions

which are not needed by the application, requesting for unwanted hardware, download or
update attack in which a benign application updates itself or another application now with
malicious payload. Trying to manually check apps to see if it is malicious or not and relying on
bad software detection has led to the need to machine learning. There 3 types of analysis static
dynamic, hybrid. Static analysis is done without running an application. Some examples of static
features include, permissions, API calls which can be extracted from the AndroidManifest.xml
file. Dynamic analysis deals with features that were extracted from the application while running,
including network traffic, battery usage, IP address. The third type of analysis is hybrid analysis
which combines the features from static and dynamic techniques.

1.1 Android Application Components

Android applications are made in Java and C++. Every application is managed by XML descriptor
document called AndroidManifest.xml. The Android Manifest document contains about the
applications made for android. These applications comprised of four parts: Activity, Service,
Content Provider, and Broadcast Receiver. The way android works is that it has four layers. They
manage the system from hardware sensors to user apps. Each layer does something specific for
apps and different functions. The first layer is the Linux Kernel. It helps the OS services and
manages the hardware’s functions like memory, power, drivers, network stack, security settings,
shared libraries and hardware abstraction. The second layer is the native library. It has native
libraries which help manage data processing. This layer has open source libraries, such as surface
manager, media framework, SQLite, Webkit, OpenGL—ES, FreeType, and SSL. These libraries do
things like composing windows on the screen, processing input and output of video and audio
data, database operations, supporting web browsers, high performance 2D and 3D graphics,
fonts support, services of SSL and TLS protocols. The third layer is the Application Framework.
This layer includes the Android APIs. This layer works with running apps and helps manages the
basic functions on the device. The programs in this layer are activity manager, content provider,
telephony manager, location manager, and resources manager. Each of these managers do a
specific task and do not interfere with each other. The fourth layer is the Application Layer. This
layer is on the top of the stack. The application layer helps in making calls, managing contacts,
sending messages, and browsing web. In this layer there are a set of core applications, such as
email client, calendar, browser, maps, contacts, SMS program, gallery.

1.2 Android Malware Detection Techniques

Mobile phones are a sensor-based event system, which permits malware to respond to
approaching SMS, position changes and so forth, increasing the sophistication of automated
malware-analysis techniques. Apps can use services, activities, and integrate varied programming
languages in one application.

1.2.1 Static Analysis

This type of analysis scans an app without running it. It looks for obvious and distinct signs of
malware, so it falls short to recognize the variation or unidentified malware. It also looks for
permissions an app wants to determine if it is malware. The drawbacks of static analysis are the

missing of real execution paths and suitable execution conditions. Additionally, there exist
problems in the occurrence of code obfuscation and dynamic code loading.

1.2.2 Dynamic Analysis

Dynamic analysis technique includes the execution of the application on either a virtual machine
or a physical device. While examination, the behavior of the application is watched and can be
dissected. The principle objective of the analysis is to achieve high code inclusion since every
feasible event ought to be activated to watch any possible malicious behavior.

1.2.3 Hybrid Analysis

The hybrid analysis technique includes consolidating static and dynamic features gathered from
examining the application and drawing data while the application is running.

2.0 Related Work

Several works have been done to understand how deep learning can be used to address the
problem of malware infestation in android devices. Among them are a few listed below.
Chen, T. et al used Deep Neural Network (DNN) in a multimodal approach to malware detection
and classification in smart phone devices to solving the problem of malware detection that
involves the incorporation of different features.
Markel, Z. and Bilzor, M in their research, conducted a study to determine the efficiency and
accuracy of using DNN to detect malware in android devices where DNN algorithm-based
approach achieved an accuracy level of 95.31%. Martin, A. et al also conducted a study on the
use of deep neural networks architecture to identify and classify malware classification
Hsien-De Huang, T. and Kao, H. Y in 2018 sought to develop a convolutional neural network
system that could learn to detect malware in android devices without having to first extract
features.
Baskaran B. and Ralescu A. identified the update attack as the most difficult intrusion technique
and therefore used a review of existing literature to determine the best approach to address this
challenge. Several types of malware were discussed and ways to defend against them. B.
Baskaran and A. Ralescu talks about different ways and methods to scan and monitor apps. There
three types of analysis are static dynamic, hybrid. Static analysis is done without running an
application. Some examples of static features include, permissions, API calls which can be
extracted from the AndroidManifest.xml file. Dynamic analysis deals with features that were
extracted from the application while running, including network traffic, battery usage, IP address.
The third type of analysis is hybrid analysis which combines the features from static and dynamic
techniques. However, with the update attack, it was concluded that it is best to compare old
version product with the new version so as to determine if the exist concerns to be addressed.
Saif D. et all also sought to develop a program that would help detect and classify malicious
applications in android devices. From 2010 to 2018 many different anti malware applications
were developed. These app used either static, dynamic, or both ways to identify malware. Finally,

in 2018 Hui-Juan Zhu et developed an 88.26% accuracy, 88.40% sensitivity and 88.16% precision
software to detect malware.
Alatwi A. H et al utilized features of benign applications to detect malware by relating the feature
requested to the common feature of its classification. It therefore proposed a category-based
machine learning classifier to enhance performance of classification models knowing that apps
within the same category have a common set of features such as permissions, APIs, intents and
filters among other features.
Huang, H. et al sought to develop an android malware detection system that could ensure that
the cyber security of android smartphones was maintained. Chen T. et al Observed that malicious
people were easily able to inject malware into android systems successfully without the malware
being detected through the use of code obfuscation.
S. Wang et al perform text-like segmentation and vectorization on URLs to analyze malware using
network traffic. The work utilized a multi-view neural network to implement deep and broad
discriminative feature learning that addresses the feature selection difficulty in malware
detection via network traffic. To evaluate different influential factors, multi-group experiments
were performed on malware detection mode.
Ganesh M. et al also proposed a convolution neural network based android malware detection
system and identified its main challenge as the high false detection rate. Wang W. et al proposed
a hybrid model that include the deep auto encoder and the convolutional neural network deep
learning algorithms to detect android malware.
Park et al (2020) show malware and adware used to infect self-driving vehicle that use the
Android OS. This approach used a machine learning based intrusion detection module combined
with a machine learning algorithm where accuracy and speed are critical.

3.0 Deep Learning Algorithms for Malware Detection

Six deep learning algorithms discussed by literature as possible solutions to deep learning for
android malware detection and classification are: deep neural network (DNN), restricted
Boltzmann machine (RBM), convolutional neural network (CNN), deep belief network (DBN),
recurrent neural network (RNN), and the deep autoencoder.
When evaluating the strengths and weaknesses of these deep learning algorithms, The reading
considers the accuracy of the algorithm, the computational power required to support the
running of the algorithm, the time spent training the algorithm, the size of data sets used to train
the algorithm, and the ability of the algorithm to be used under various circumstances or
applications. The reading also considers the level of difficulty when training the algorithm, and
the number of variations that exist for a given algorithm.
The major strength of the DNN is that it has been used in different applications. However, its
weakness is that its training consumes a lot of time. The major strength of the RBM is that it can
be used as a feature extractor for the other algorithms. However, its weakness is that its training
is time consuming, and it also requires a lot of computational power. CNN’s major strength is that
it has many variations. However, it needs a large data set to train. The major strength of DBN is
that it has a layer by layer learning approach. However, this gives it the weakness of requiring a
lot of computational power, and time consumption during training. The major strength of the
RNN is that it can remember serial events, however, the learning process has the problem of

vanishing gradient. The major strength of the deep autoencoder is that it has numerous
variations and can be used together with other algorithms to create a hybrid. However, it lacks
the ability to determine pertinent data.
According to authors, the review of the different deep learning algorithms that can be used or
that have been proposed as solutions to deep learning malware detection in android devices was
the first of its kind, although there are other related reviews. The aim was to fill the existing gaps
in the literature regarding the use of deep learning to detect and classify malware in android
devices.

4.0 Methodology

The data was collected by determining the relevant information from the literature, then listing
the keywords to be used in the search process for the repositories. After the search results,
exclusion criteria are applied to confine the review of the pertinent papers. An inclusive list of
reviews is made from the collected papers. The search keywords are summarized as deep
learning malware detection and analysis. Other learning strategies applied include the
convolutional neural network in Android malware analysis; deep belief network in Android
malware analysis; recurrent neural network in Android malware analysis. The search database
repository probe finds significant publications such as Web Knowledge and Science Direct.
Among the criteria used for exclusion to find only relevant results include finding papers
published in a non-English language, those published in their final versions, duplicated papers,
and those using deep-learning for malware detection in Windows.

5.0 Review of Literature Analysis

Various studies have been conducted in regards to malware detection for android devices. A
static analysis using a malware identification system utilizing the deep learning method attained
an accuracy of 97.4%. This approach is designed to seek permission from other apps and
converting permission into image files. With an accuracy of 93% on unbalanced data, it is evident
that deep learning offers an exact and extensible solution for Android malware since it relies on
patterns to determine the malware.
The malware detection system, DeepFlow builds on data streams in malignant apps that may
contrast the original ones. The contrasts are used to distinguish novel apps using a deep learning
model. An alternative method would be to apply API calls that occurred similarly to the small
code. A different approach to detecting malware is through CNN. In this approach, the features
are gained from raw data and malware signatures are eliminated.
Other detection models include the MalDozer that depends on an artificial neural network to
identify the malware. The color compounded convolution neural network-based AMD depends
on color representation to translate images and decode the malware. The DeepRefiner malware
characterization uses deep neural networks with several hidden layers to automate feature
extraction. This is also seen in DroidDeep.
Other models of malware detection include dynamic analysis such as natural language processing
techniques, and Deep4MalDroid; and the hybrid analysis such as Droidsec and DDfender.

Hou et al (2016), carried out a study whose purpose was to propose a deep learning model that
could detect malware in android devices that was difficult to detect in other devices. The
proposed method used hybrid analysis, since it included features of both static analysis and
dynamic analysis. It used the extracted Linux kernel system calls. The name of the proposed
model was Deep4MakDroid. The experimental results of the model however showed that it
performed relatively less accurately compared to other models. The experimental results showed
that the proposed model was able to outperform all the other models which it was compared
with, based on efficiency and accuracy.
Yuan et al (2014), conducted a study to devise a machine learning method that could detect
android malware devices. The researchers used a machine learning method that utilizes more
than 200 features, using both static and dynamic analysis. The authors appreciated the fact that
android malware were being developed at a rate that the traditional detection methods could
not keep up. Experimental results of the proposed method showed that the proposed malware
detection model had an accuracy level of 96%.
Kim et al (2018), conducted a study whose objective was to propose a novel framework for
android malware detection. The researchers used a multimodal approach, which they touted as
the first of its kind, and that would revolutionize android malware detection. The research used
the deep neural networks, and the model was tested on a sample size of 41,260 applications. The
experimental results of the model however showed that it performed relatively less accurately
compared to other models.
Su et al (2016), sought to create a model that would be able to use machine learning technology
to detect new software that was not yet registered in databases, and determine whether it was
benign or not. The researchers evaluated the proposed model (DroidDeep) against a data set of
a total of 7972 samples. Half of the sample was made of malicious software. The experimental
results showed that the model had a high runtime efficiency and a detection accuracy of 99.4%.
McLaughlin et al (2017), also conducted a study to propose a deep learning method for android
malware detection. The proposed model used a convolutional neural network deep learning
algorithm in order to create the proposed model. The convolutional neural network used static
analysis on raw opcode sequence to detect android malware. The results of the study showed
that the model was able to scan large number of files accurately and efficiently on a GPU.
Karbab et al (2017), conducted a study to propose a model for detecting android malware using
deep learning on API methods sequence. The proposed model used an API methods sequence to
classify applications and in the process identify malware applications. The name of the proposed
model was MalDozer. The researchers used sample sizes that consisted of datasets of between
1k-33k malware, and 38k benign apps to detect malware. The experimental results showed that
the proposed model had an accuracy of 96-99% when classifying software. The experimental
results also showed that the model had a false positive rate of 0.062% - 2%, on the tested data
set.
Li D. et al (2018), conducted a study to determine a model that would follow a fine-grained
android malware detection. The proposed model followed a static analysis, and compared it with
other methods in its experimental stages. The experimental results showed that the proposed
model has an accuracy level of 97%, and a false positive rate of 0.1%.
Pektaş et al (2020), conducted a study with the objective to propose a method for effective
android malware detection using API call graph embedding. The researchers used the API call

graph to represent the possible execution paths. Also, to achieve the objective, the researchers
combined all parameters to ensure the best combination of hyper-parameters. The experimental
results of the proposed model had an accuracy level of 98.86%, an accuracy of 98.65% in F-
measure, 98.47% in recall, and 98.84% precision.
Li W. et al (2018), in their research proposed an android malware detection approach using
weight adjusted deep learning. The algorithm that was used to develop the model was deep
neural networks. The model used a characterization and identification approach. However, the
proposed model had an accuracy level which was relatively lower than other methods proposed
by literature. The accuracy level of the proposed model was 90%.
Xu et al (2018) conducted a study to propose an android malware detection system based on
deep learning that uses CFG and DFG. In the study, the algorithm used was convolutional neural
networks. In order to detect the malware applications, the proposed model used semantic graphs
to characterize android applications. In order to experiment the proposed model, the researchers
used arvin, Drebin, VirusShare and ContagioDump datasets. The experimental results showed
that the proposed model performed better than some previous studies and many anti-virus tools
gathered in VirusTotal.
Saif et al (2018), conducted a study to propose a model that they could use to detect and classify
malicious applications in android devices. The research used the deep belief network to create
the model. The experimental results of the proposed model showed an accuracy level of 99.1%.
Chen et al (2019), also conducted a study in order to create a novel Android malware detection
system that would detect malware that was novel and not yet recorded in databases. The
research used the deep belief network in order to create the proposed model. The experimental
data used had a total of 15,000 applications. The results of the experiment showed that the
proposed model had an accuracy level of 99.10% - 99.40%, in detecting malicious software.
Su et al (2020), also designed a model to detect malware in android devices using a deep belief
network. The proposed model collected data from 11 different static behavioral characteristics.
The researcher then experimented with the performance of the proposed model comparing with
others already proposed by previous studies. The results of the study showed that the proposed
system had an accuracy level of 99.4%.
Wang et al (2019), conducted a study to propose an android detection malware software. The
researchers approached the research problem by developing a hybrid model that was a hybrid
between autoencoder and convolutional neural network. The deep learning algorithm was
trained used a total of 23,000 software, where 13,000 of these were malicious software. The
experimental results showed that the proposed model had an accuracy level that was 5% higher
than other models that used SVM.
Ganesh et al (2017), proposed a model that used a convolutional neural network-based android
malware detection system. The researchers sought to use the algorithm to classify different
software and therefore detect the malicious software. In order to determine the efficacy of the
proposed model, the researcher used data that had 2500 android software. The experimental
results of the proposed model had an accuracy level of 93%.
Hasegawa et al (2018), also conducted a study to propose a model that would be used to detect
android malware, while at the same time overcoming the problem of having to deal with the
limited computation power of most android devices. To overcome this problem, the researcher
proposed a one-dimensional convoluted neural network. The researchers then experimented

with the performance of the proposed model using a data set of 7,000 software, where 5,000 of
them were android malware. The experiment results showed that the proposed model had an
accuracy level of 95.40-97.04%.
Markel et al (2014), conducted research with the aim of proposing a model that would use the
deep neural network algorithm to detect malware in android devices and to determine the
efficiency and accuracy of using a deep neural network to detect such malware. The researchers
then experimented with the study and compared its performance with the performance of other
models that had been previously discussed by literature. The proposed algorithm had an accuracy
level of 95.31%. This accuracy level was higher than the other models that it was compared to in
the specific research.
Chen et al (2019), also conducted a study with the aim of proposing a model that would solve the
problem of malware detection of most novel malware evading detection by using complex
features. The researchers proposed a model that uses the deep neural network algorithm to
detect Android malware. The proposed model was experimented on using a data set that had
41,260 samples. The accuracy level of the proposed model was higher than the other models. It
had an accuracy level of 99.10% - 99.40%.
Martín et al (2017), also set out to propose a model that would detect android malware using
the deep neural networks architecture. The proposed model would classify and identify the
malware, based on the extract features of the malware. The accuracy of the proposed model was
improved by using a new parameter architecture and genetic algorithm. The researchers then
conducted a study to determine the performance of the proposed model. The experimental
results showed that the proposed model had an accuracy level of 91%.
Mohammed et al (2020) made DL-Droid which is a deep learning system to detect malicious
Android applications. It uses dynamic analysis using stateful input generation. They did tests on
over 30,000 applications. Experiments were done to compare the detection performance and
code coverage of the stateful input generation method with the commonly used stateless
approach using the deep learning system. According to (2) DL-Droid can achieve up to 97.8%
detection rate using dynamic analysis only and 99.6% detection rate with dynamic and static
analysis.
Dali et al (2017) developed DeepFlow, the results show a high detection F1 score of 95.05%,
outperforming traditional machine learning-based approaches, which reveals the advantage of
deep learning technique in malware detection.
The figure below depict the work done by Akandwanaho and Kooblal in 2019 at The African
Journal of Information and Communication (AJIC) using the neural network ensemble and metric
algorithm (NNE-MA) in combination with other proven techniques at the time to include the
generic algorithm (GA), ant colony optimization (ACO), and particle swarm optimism (PSO)
algorithms. NNE-MA showed to produce less errors than the existing techniques at the time.

Ref - Akandwanaho, S. M. , & Kooblal, M. (2019)

Zhong et al discussed Multi-level deep learning system (MLDLS) as mapped out in five phases that
heavily involve MapReduce. It detects malware with high accuracy and remove anomalies. In
2019, MDLS excelled in true and false positive rates, construction and comparison time when
experimented. The figure below shows a graphical representation of the result

Ref – Chen et al (2019)

Fang et al (2020) conducted an experiment using DeepDetectNet vs RLAttackNet where Portable
Executive (PE) malware detection and the use of Generative Adversarial Network (GAN) to
upgrade PE malware detection, and by combining both; levels of security were astonishing. The
figure below is a representation of the outcome of this experiment

Fang et al (2020)

Choi et al (2020) discussed a deep learning-based model utilizing an attention based method, the
accuracy of attention out performed long short-term memory (SC-LSTM) and Convolutional
neural network (CNN), with an accuracy of 12% & 5% higher. They presented the chart below
showing accuracy as a function of length of sequence.

Ref - Choi et al (2020)

Ye et al (2018) found the results of using a heterogeneous deep-learning frame work that includes
an AutoEncoder and a layer of associative memory to detect unknown malware by way of pre-
training and fine-tuning. The figure below shows how malwares are identified

Ref - Ye et al

The following table shows a summary of the different algorithms used and their accuracy levels

Researchers Methodology and or Deep
Learning Algorithm Used

Findings/Accuracy

Hou, Saas, Chen and Ye
(2016)

Dynamic analysis, using the
extracted Linux kernel
system calls.

The proposed model
(Deep4MakDroid) was able to
outperform other malware
detection software.

Yuan, Lu, and Wang
(2014)

Used a machine learning
method that utilizes more
than 200 features, using both
static and dynamic analysis.

The malware detection had an
accuracy level of 96%.

Kim, Kang, Rho, Sezer
and Im (2018).

- Used a multimodal
approach and was the first
of its kind.
- Performance evaluated on

41,260 samples.
- Used deep neural networks

models

The performance and accuracy
were relatively lower compared
to other models

Su, X., Zhang, D., Li, W., &
Zhao, K. (2016)

- Used a detection approach
(DroidDeep).
- The performance

evaluated on a total of
7972 samples

- High runtime efficiency
- A detection accuracy of 99.4%

McLaughlin, N., Martinez
del Rincon, J., Kang, B.,
Yerima, S., Miller, P.,
Sezer, S., ... & Joon Ahn,
G. (2017)

- Used the Convolutional
neural network
- Based on static analysis on

raw opcode sequence.

- File was able to scan large
number of files accurately and
efficiently on a GPU.

Karbab, E. B., Debbabi,
M., Derhab, A., &
Mouheb, D. (2017)

- API methods sequence
- Proposed MalDozer, which

uses sequence
classification
- Used various datasets of

between 1k-33k malware,
and 38k benign apps to
detect malware

- Has an accuracy of 96-99% when
classifying software
- Has a false positive rate of

0.062% - 2%, on the tested data
set.

Li, D., Wang, Z., & Xue, Y.
(2018)

 Deep Neural Network - Has an accuracy level of 97%
- Has a false positive rate of 0.1%

Pektaş, A., & Acarman, T.
(2020).

- Used the API call graph to
represent the possible
execution paths.
- Combined all parameters

to ensure the best
combination of hyper-
parameters

- Results from the experiments
show an accuracy level of
98.86%, an accuracy of 98.65%
in F-measure, 98.47% in recall,
and 98.84% in precision.

Li, W., Wang, Z., Cai, J., &
Cheng, S. (2018).

- Deep neural networks
- Used a characterization

and identification
approach
- Experimented on the

efficacy of the model using
237 features

- Accuracy relatively lower than
other methods proposed by
literature

- Accuracy level was 90%

Xu, Z., Ren, K., Qin, S., &
Craciun, F. (2018)

- The algorithm used was
convolutional neural
networks

- Used semantic graphs to
characterize android
applications

- Used arvin, Drebin,
VirusShare and
ContagioDump datasets to

- Performs better than Yeganeh
Safaei et al.’s approach, Allix et
al.’s approach, Drebin and
many anti-virus tools gathered
in VirusTotal,

experiment the proposed
model

Markel, Z., & Bilzor, M.
(2014)

Deep Neural Networks 95.31

Martín, A., Fuentes-
Hurtado, F., Naranjo, V.,
& Camacho, D. (2017)

Deep Neural Networks 91%

Hasegawa, C., & Iyatomi,
H. (2018)

Convolutional Neural
Network

95.40-97.04%

Wang, W., Zhao, M., &
Wang, J. (2019).

Convolutional Neural
Network

5% higher than other models that
used SVM

Ganesh, M., Pednekar,
P., Prabhuswamy, P.,
Nair, D. S., Park, Y., &
Jeon, H. (2017)

Convolutional Neural
Network

93%

Su, X., Shi, W., Qu, X.,
Zheng, Y., & Liu, X. (2020)

Deep Belief Network 99.4%

Chen, T., Mao, Q., Lv, M.,
Cheng, H., & Li, Y. (2019)

Deep Neural Networks 99.10% - 99.40%

Saif, D., El-Gokhy, S. M.,
& Sallam, E. (2018)

Deep Belief Network 99.1%

Mohammed K. Alzaylaee,
Suleiman Y. Yerima, Sakir
Sezer (2020)

Dynamic analysis using
stateful input generation

97.8% - 99.6%

Dali Zhu, Hao Jin, Ying
Yang, D. Wu and Weiyi
Chen (2017)

 95.05%

5.1 Discussion

It is evident there have been several research into the application of deep learning in the
detection of malware in android devices. The adoption of this technique however is dependent
on several factors to include time, complexity of need and cost. For example, the decision to
implement static, dynamic or hybrid analysis approach is solely dependent on the need of the
administrator and complexity of the platform involved. Various algorithms were presented with
different strengths and weaknesses. These algorithms also come with different accuracy levels.
Since deep learning uses artificial intelligence by training models, available dataset becomes
another critical component to be put into consideration when selecting the algorithm to
implement. Time of training is also important to consider as some models expend more time
during training compared to others. The one thing that is certain is the fact that this scheme has
proven to be astronomically more effective in detecting malware when compared to traditional
malware detection software.

5.2 Challenges and Open Issues

A number of open issues exist with the most technical being availability of enough datasets for
the training of any model to be implemented. It is also of utmost importance to deal with the
time involved in the training of these models. Concept drift is a concern as it applies to the rapid
growth we are experiencing, security issues with deep learning, and data privacy preservation.

6.0 Conclusion

With this review of the use of deep learning in Android malware detection, a comparison of
available work was presented. This review identified knowledge gaps and highlight challenges,
and open issues that should be considered in future work. It was shown that deep learning
methods are subject to various adversarial attack, concept drift remains a challenge, and that
static analysis have dominated the existing work. Generally, the result of this work can aid to
promote research in Android malware detection and maybe answer the question of which model
is the best to implement.

References

[1] A. Naway and Y. Li, “A Review on The Use of Deep Learning in Android Malware Detection,”
p. 15.

[2] B. Baskaran and A. Ralescu, “A Study of Android Malware Detection Techniques and
Machine Learning,” p. 9, 2016.

[3] Saif, D., El-Gokhy, S. M., & Sallam, E. (2018). Deep Belief Networks-based framework for
malware detection in Android systems. Alexandria engineering journal, 57(4), 4049-4057.

[4] Alatwi H. A, Oh T. , Fokoue E., and Stackpole B., “Android Malware Detection Using
Category-Based Machine Learning Classifiers,” in Proceedings of the 17th Annual Conference
on Information Technology Education, New York, NY, USA, Sep. 2016, pp. 54–
59, doi: 10.1145/2978192.2978218.

[5] Chen, T., Mao, Q., Lv, M., Cheng, H., & Li, Y. (2019). DroidVecDeep: Android Malware
Detection Based on Word2Vec and Deep Belief Network. TIIS, 13(4), 2180-2197.

[6] Huang, H., Chen, K., Ren, C., Liu, P., Zhu, S., & Wu, D. (2015, April). Towards discovering and
understanding unexpected hazards in tailoring antivirus software for android.
In Proceedings of the 10th ACM Symposium on Information, Computer and Communications
Security (pp. 7-18).

[7] S. Wang et al., “Deep and Broad Learning Based Detection of Android Malware via Network
Traffic,” in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS),
Banff, AB, Canada, Jun. 2018, pp. 1–6, doi: 10.1109/IWQoS.2018.8624143.

[8] Ganesh, M., Pednekar, P., Prabhuswamy, P., Nair, D. S., Park, Y., & Jeon, H. (2017, July). Cnn-
based android malware detection. In 2017 International Conference on Software Security
and Assurance (ICSSA) (pp. 60-65). IEEE.

https://doi.org/10.1145/2978192.2978218
https://doi.org/10.1109/IWQoS.2018.8624143

[9] Wang, W., Zhao, M., & Wang, J. (2019). Effective android malware detection with a hybrid
model based on deep autoencoder and convolutional neural network. Journal of Ambient
Intelligence and Humanized Computing, 10(8), 3035-3043.

[10] Chen, T., Mao, Q., Lv, M., Cheng, H., & Li, Y. (2019). DroidVecDeep: Android Malware
Detection Based on Word2Vec and Deep Belief Network. TIIS, 13(4), 2180-2197.

[11] Hsien-De Huang, T., & Kao, H. Y. (2018, December). R2-D2: color-inspired convolutional
neural network (CNN)-based android malware detections. In 2018 IEEE International
Conference on Big Data (Big Data) (pp. 2633-2642). IEEE.

[12] Martín, A., Fuentes-Hurtado, F., Naranjo, V., & Camacho, D. (2017, June). Evolving deep
neural networks architectures for android malware classification. In 2017 IEEE Congress on
Evolutionary Computation (CEC) (pp. 1659-1666). IEEE.

[13] Markel, Z., & Bilzor, M. (2014, October). Building a machine learning classifier for malware
detection. In 2014 Second Workshop on Anti-malware Testing Research (WATeR) (pp. 1-4).
IEEE.

[14] Hou, S., Saas, A., Chen, L., & Ye, Y. (2016). “Deep4MalDroid: A deep learning framework for
Android malware detection based on Linux kernel system call graphs,” Proc. - 2016
IEEE/WIC/ACM Int. Conf. Web Intell. Work. WIW 2016, pp. 104–111, 2017.

[15] Li, W., Wang, Z., Cai, J., & Cheng, S. (2018, March). An android malware detection approach
using weight-adjusted deep learning. In 2018 International Conference on Computing,
Networking and Communications (ICNC) (pp. 437-441). IEEE.

[16] Li, D., Wang, Z., & Xue, Y. (2018, May). Fine-grained android malware detection based on
deep learning. In 2018 IEEE Conference on Communications and Network Security (CNS) (pp.
1-2). IEEE.

[17] Hou, S., Saas, A., Chen, L., & Ye, Y. (2016, October). Deep4maldroid: A deep learning
framework for android malware detection based on linux kernel system call graphs. In 2016
IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW) (pp. 104-
111). IEEE.

[18] Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2017). Android malware detection
using deep learning on API method sequences. arXiv preprint arXiv:1712.08996.

[19] Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2018). A multimodal deep learning method
for android malware detection using various features. IEEE Transactions on Information
Forensics and Security, 14(3), 773-788.

[20] McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., ... & Joon
Ahn, G. (2017, March). Deep android malware detection. In Proceedings of the Seventh ACM
on Conference on Data and Application Security and Privacy (pp. 301-308).

[21] Pektaş, A., & Acarman, T. (2020). Deep learning for effective Android malware detection
using API call graph embeddings. Soft Computing, 24(2), 1027-1043.

[22] Su, X., Zhang, D., Li, W., & Zhao, K. (2016, August). A deep learning approach to android
malware feature learning and detection. In 2016 IEEE Trustcom/BigDataSE/ISPA (pp. 244-
251). IEEE.

[23] Xu, Z., Ren, K., Qin, S., & Craciun, F. (2018, November). CDGDroid: Android malware
detection based on deep learning using CFG and DFG. In International Conference on Formal
Engineering Methods (pp. 177-193). Springer, Cham.

[24] Yuan, Z., Lu, Y., Wang, Z., & Xue, Y. (2014, August). Droid-sec: deep learning in android
malware detection. In Proceedings of the 2014 ACM conference on SIGCOMM (pp. 371-372).

[25] Mohammed K. Alzaylaee, Suleiman Y. Yerima, Sakir Sezer, DL-Droid: Deep learning based
android malware detection using real devices, Computers & Security, Volume 89, 2020,
101663, ISSN 0167-4048

[26] Dali Zhu, Hao Jin, Ying Yang, D. Wu and Weiyi Chen, "DeepFlow: Deep learning-based
malware detection by mining Android application for abnormal usage of sensitive data,"
2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, 2017, pp. 438-
443, doi: 10.1109/ISCC.2017.8024568.

[27] Akandwanaho, S. M. , & Kooblal, M. (2019). Intelligent malware detection using a neural
network ensemble based on a hybrid search mechanism. The African Journal of Information
and Communication (AJIC), 24, 1-21. https://doi.org/10.23962/10539/28660

[28] Zhong, W., & Gu, F. (2019). A multi-level deep learning system for malware detection.
Expert Systems with Applications, 133, 151–162. https://doi-
org.blume.stmarytx.edu/10.1016/j.eswa.2019.04.064

[29] Fang Y, Zeng Y, Li B, Liu L, Zhang L. DeepDetectNet vs RLAttackNet: An adversarial method
to improve deep learning-based static malware detection model. PLos ONE. 2020;15(4):1.
Accessed November 17, 2020
http://search.ebscohost.com.blume.stmarytx.edu:2048/login.aspx?direct-
true&db=edb&AN=142872806&site=eds-live%scope=site

[30] Choi, Sunoh, et al. “Attention-Based Automated Feature Extraction for Malware Analysis.”
Sensors (14248220), vol. 20, no. 10, May 2020, p. 2893. EBSCOhost,
search.ebscohost.com/login.aspx?direct=true&db=edb%AN=143762309&site=eds-
live&scope=site.

[31] Ye, Yanfang, et al. “DeepAM: A Heterogenous Deep Learning Framework for Intelligent
Malware Detection.” Knowledge & Information Systems, vol. 54, no. 2, Feb. 2018, p. 265.
EBSCOhost, search.ebscohost.com/login.aspx?direct=true&db&AN=127498065&site=eds-
live&scope=site.

[32] Park, Seunghyun, and Jin-Young Choi. “Malware Detection in Self-Driving Vehicles Using
Machine Learning Algorithms.” Journal of Advanced Transportation, Jan. 2020, pp. 1–10.
EBSCOhost, doi:10.1155/2020/3035741.

https://doi.org/10.23962/10539/28660
https://doi-org.blume.stmarytx.edu/10.1016/j.eswa.2019.04.064
https://doi-org.blume.stmarytx.edu/10.1016/j.eswa.2019.04.064
http://search.ebscohost.com.blume.stmarytx.edu:2048/login.aspx?direct-true&db=edb&AN=142872806&site=eds-live%25scope=site
http://search.ebscohost.com.blume.stmarytx.edu:2048/login.aspx?direct-true&db=edb&AN=142872806&site=eds-live%25scope=site

