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Abstract 
Healthcare professionals commonly use Electrocardiogram (ECG) as a low-cost 

diagnostic tool for monitoring heart electrical signals. Arrhythmia, or an abnormal 

cardiac signal, can be life-threatening and even fatal. Arrhythmia can be categorized into 

various types, such as, tachycardia, bradycardia, supraventricular arrhythmias, and 

ventricular. The automated monitoring of arrhythmia and classification with ECG is 

beneficial for doctors. In this research, we use deep machine learning for automated 

arrhythmia classification focusing on the recent trends in arrhythmia classification. Using 

St. Mary’s University Deep Learning Platform, we conducted heavy and complex 

simulations to measure the performance of the various arrhythmia classification and 

detection models. Finally, we present the proposed deep learning algorithms’ accuracy, 

which surpasses the existing algorithms’ performance in precision and sensitivity. 
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1 Introduction 

ECG is often used to evaluate the heart’s electric activity by simply placing the number of 

electrodes on various skin parts and has been broadly used to identify heart diseases due to its 

simplicity and non-invasive nature. By examining the electrical activity of each heartbeat, i.e., 

the mixture of action instinct waveforms produced by different cardiac tissues found in the 

heart, it is possible to identify some of its heart abnormalities. Features like P waves, T waves, 

QRS complex can be extracted from ECG, and studying and classifying them is crucial in 

diagnosing various heart diseases (Artis, Mark & Moody, 1991). An ECG signal with its 

features is shown in Figure 2. Detecting and classifying various arrhythmias is possible by 

studying such features, including abnormal heart rate or abnormal features of the signal. 

Irregular heartbeats, known as arrhythmias, have their unique pattern; therefore, it is possible 

to classify and detect the type (Melo, Caloba & Nadal, 2000). Two main categories are 

considered for arrhythmias. The first category consists of arrhythmias shaped by an abnormal 

heartbeat, a.k.a as morphological arrhythmia. The other type is arrhythmias formed by a set of 

irregular heartbeats, known as rhythmic arrhythmias. Abnormal heartbeats form alterations in 

the wave frequency or morphology, and the ECG tests may detect all these alterations. This 

research focuses on recognizing heart diseases by using ECG feature extraction and deep 

machine learning. This is feasible by classifying regular and irregular ECGs using deep neural 
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network techniques and extracting the ECG signals’ features. We use the state-logic machine 

algorithm to identify heart diseases, such as bradycardia, tachycardia, and first and second-

degree Atrioventricular (AV) block (Moody & Mark, 2001). Other arrhythmia types are 

described in this research, mainly ventricular tachycardia, atrial fibrillation, malignant 

ventricular, atrial flutter, and ventricular bigeminy. We can detect these with deep machine 

learning algorithms (Salam & Srilakshmi, 2001). 

 Normally, researchers strive to automatically distinguish between regular and irregular 

heartbeats. Signal processing, feature extraction, and classification are the three stages that 

these researchers generally follow. The heartbeats are extracted from the continuous ECG 

waveform into individual heartbeats by signal processing raw ECG signals (Perez, Marques & 

Mohammadi, 2014). Following that, feature extractions transform the variable-length time-

domain heartbeat waveforms into fixed-length feature vectors that encode the heartbeat’s 

features (Palreddy, Tompkins & Hu, 1995). Several features have been extracted from ECG 

signals to identify the heartbeats, such as morphological features, Hermite coefficients, wavelet 

transform features, heartbeat interval features, and sparse decomposition. On the other hand, 

for classification, various deep machine learning algorithms have been used here, including 

artificial neural networks (ANNs), deep neural networks (DNNs), support vector machines 

(SVMs), convolutional neural networks (CNNs), and multi-layer perceptron (MCP). When 

various datasets are available, machine learning techniques are good to consider and often 

exceed human agreement rates (Zebardast, Ghaffari & Masdari, 2013). As shown in Figure 1, 

In traditional Machine learning methods, most of the features need to be extracted by a domain 

expert to reduce the ease of the data and make patterns more noticeable to learning algorithms 

to be successful. The significant improvement of Deep Learning algorithms is that they aim to 

learn high-level features from data incrementally. This reduces the need for domain expertise 

and hard-core feature extraction. Hence DNN has far better performance when we compare it 

with traditional methods.  

 

Figure 1. Performance graph versus the Amount of data 

 CNN was employed for automated coronary artery disease diagnosis, and it was found that 

CNN remains resilient despite shifting and scaling invariance, which makes it a better choice 

(Acharya et al., 2017). In this research, we propose robust methods for heart disease diagnosis 
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using CNN and multi-layer perceptron (MLP). We also use CNN to differentiate between 

normal and abnormal heart sound recordings with an accuracy of 82% (Acharya et al., 2017). 

The deep machine learning method for single-image super-resolution (SR) was also tested using 

a CNN algorithm with better performance than the state-of-the-art method (Nilanon et al., 

2016). In the 2017 PhysioBank competition, Fernando et al. (2017) proposed a method with an 

accuracy of 83% on PhysioBank data, which applies CNN to identify four different arrhythmias 

from short segments of ECG recordings. Ghiasi et al. [15] proposed algorithms to detect atrial 

fibrillation using a feature-based algorithm and CNN with 80% accuracy on training datasets 

in the same competition. 

 
 

(a) (b) 

Figure 2. Ideal electrocardiogram (ECG) signal with key features indicated; (a) P wave, QRS complex, 

and T wave which play important roles in diagnosis abnormality of heart signal; (b) Features of an ECG 

signal; how and which part of the heart is used to generate each feature (Fernando et al. 2017). 

 The problem-solving approach is the critical distinction between the simple and deep 

neural network (DNN) method. DNN has been shown to solve the problem end to end, 

whereas simple neural network methods need problem statements to break down into multiple 

parts to be solved in the beginning, and then the results will be merge at the final stage. 

Commonly, when there are more than three layers of neurons, including input and output, the 

method is referred to as “deep learning” (Shadi et al., 2017). Figure 3 showed differences 

between simple NN and deep NN. Usually, a deep neural network algorithm takes longer to 

train than a simple neural network due to the large number of parameters it contains. However, 

utilizing state of the art HPC deep learning platform at St. Mary’s University, we were able to 

execute deep learning algorithms very quickly. The main advantage of DNN is that it can detect 

more complex features than a simple neural network because of the number of hidden layers. 

This function of DNN makes it able to handle a large amount of data that contains many 

features. Deep learning neural networks often end in an output layer: a logistic, Softmax, or 

classifier that assigns a chance to a particular outcome (Shadi et al., 2017).  
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Figure 3. Comparison between simple neural network (left) and deep NN (right) (Shadi et al., 2017).  

 We used two PhysioBank datasets for our proposed algorithms, i.e., normal sinus rhythm 

database (NSR-DB) and MIT/BIH arrhythmia database, to classify regular and irregular ECG 

signals using the multilayer-perceptron technique. Another technique uses a four-layer of CNN 

to detect several arrhythmias in arbitrary length ECG dataset features. The dataset employed in 

this study contains various heart diseases, such as normal sinus arrhythmia, second degree AV 

block, first degree AV block, atrial flutter, malignant ventricular, atrial fibrillation, ventricular 

tachycardia, and ventricular bigeminy. The data were obtained from kaggle.com. The NN 

algorithms were trained using the Google TensorFlow library, a free and open-source software 

library for machine and deep learning. The algorithm can be used across a range of tasks but 

focuses on training for deep neural networks. Once both algorithms had been trained on the 

downloaded dataset, they were trained using another dataset with distinct characteristics from 

the training dataset. 

2 Approach 

2.1 Problem Formulation 

The proposed algorithm for detecting and classifying ECG arrhythmias is a sequence-to-

sequence task that takes an input, i.e., ECG signal, S = [s1, …, sk]. It gives labels as an output 

in the form of r = [r1, …, rn], where ri can take any of the labels. Here, for a multi-layer 

perceptron algorithm, we used m = 2, and for the CNN algorithm, we used m = 9. The individual 

output label refers to a segment of the input, and output labels cover the whole sequence (Chow, 

Marine & Fleg, 2012). 
For an example in the training set, we enhance the cross-entropy function below  

L(𝑆, r ) =  
1

𝑛
෍ log 𝑝 (𝑅 = 𝑟௜ 

௡

௜ୀଵ

 | 𝑆) (1) 

where p is the probability the network assigns to the ith output, taking on the value ri. 

2.2 Convolutional Neural Network (CNN) 

CNN here had a significant advantage over other neural networks methods by their superior 

performance with input signals and images. They are feed-forward ANN inspired by biological 
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processes and intended to identify patterns directly from data or images by integrating feature 

extraction and classification (Fleg, 2012). A CNN involves three significant layers: 

convolutional layer, pooling layer, and fully connected layer. The convolutional layer is the 

most important block of a CNN, where most of the computation occurs. This layer normally 

requires the following components: i) input data, ii) a filter, and iii) a feature map (Fleg, 2012). 

A non-linear activation layer follows convolutional layers. This helps to capture more complex 

parameters of the input signal possible. Pooling layers are employed to subsample the last layer 

by mixing small rectangular subsets of values. This layer, also known as the down sampling 

layer, performs dimension reduction, reducing the number of parameters in the input 18]. Like 

the convolutional layer, the pooling layer sweeps a filter across the whole input; however, the 

difference is that this filter does not have weights. There are two types of pooling: max pooling 

and average pooling. Max and average pooling are applied by replacing the input values with 

the maximum or the average values, respectively (Acharya et al., 2016). On the other end, a 

significant amount of data is lost in the pooling layer. It also has several benefits to the CNN 

as this layer helps lower complications, increase efficiency and limit the risk of overfitting. A 

fully connected layer (FCL) performs classification based on the features extracted from the 

past layers and their different filters (Acharya et al., 2016). While convolutional and pooling 

layers employed the ReLU functions, FCL typically leverages a Softmax activation function 

that classifies inputs appropriately, generating a probability from 0 to 1. 

2.3 Multi-layer Perceptron (MLP) 

Deep neural networks are made of multiple layers and multi-layer perceptron (MLP), which 

indicates that it is made of more than one perceptron. A single layer perceptron can solve 

linearly separable problems, but when one or more layers are added in a single layer perceptron, 

it is known as MLP (Acharya et al., 2016). MLP network is recognized as a feed-forward neural 

network that consist of one or several hidden layers. It is usually used to classify input patterns, 

pattern recognition, prediction based on the input data, and approximation (Acharya et al., 

2016). MLP is typically made up of an input layer that receives the data, an output layer that 

decides or predicts the input data, and between those two, any number of hidden layers that are 

the computational portion of the MLP (Acharya et al., 2016; Desai et al., 2016).  

 MLPs are often used to supervise learning. They train on a set of input-output data and 

learn to model the correlation or dependencies between input and output data sets. Training 

requires modifying the parameters, i.e., the weights and biases of the model, to minimize the 

error (Desai et al., 2016). Backpropagation is also applied to make those weights and bias 

adjustments relative to the error. Here the error can be calculated in various ways, for an instant, 

by using root mean squared error. 

2.4 Model Architecture 

CNN and MLP with several hidden layers are used for sequence-to-sequence learning 

algorithms. CNN is one of the central branches of deep, feed-forward machine learning neural 

networks that can handle extensive data. Like any other neural network, CNN has input, output, 
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and several hidden layers. The hidden layers include mainly convolutional, pooling layers, 

normalization layers, fully connected layers, and finally, Softmax layers. Our proposed CNN 

algorithm has a convolutional layer with a Softmax function that provides the output for the 

trained network. It uses the ReLU, a.k.a rectifier linear unit and activation tool in all convolution 

layers. The max-pooling layer functions independently for each column and row of the input 

and resizes them spatially (Zubair, Kim & Yoon, 2016). We used the max-pooling layer with a 

stride size of 2 by 2 in the function because it gave improved accuracy than the original 3 by 3 

pooling layer. The use of a 3 by 3 stride layer yields higher info loss. The pooling layer in the 

CNN lowers the overfitting problem by reducing the input size by half of the actual input. 

Flowchart diagrams of both algorithms are depicted in Figure 4. Both models take features of 

an ECG signal as the network’s input and predict the output as labels of the data. Initially, ECG 

datasets are pre-processed, and for that purpose, the first network reads the datasets and 

identifies their features and labels. For the MLP, the labels will be arrhythmia and regular sinus. 

In contrast, in the CNN, the labels are normal sinus arrhythmia, first degree AV block, second 

degree AV block, atrial fibrillation, atrial flutter, malignant ventricular, ventricular bigeminy, 

and ventricular tachycardia (Oquab et al., 2015). Figure 5 illustrates our proposed architecture 

of the CNN in the algorithm where the first and last convolutional layers are not the same as 

the middle three convolutional layers. 

 

Figure 4. System process flowchart of Multilayer Perceptron (MLP) and Convolution NN. To define 

features and labels in the dataset, two TensorFlow variables were determined. One hot encoder was used 

to encode the dataset. 

 The next step is to encode the dependent variable—the dataset labels—for the deep 
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network. As the data is classified as containing different arrhythmia names, it is mandatory to 

encode the information because the labels are not numerical, and it is not possible to read them 

directly by the algorithm (Krizhevsky, Sutskever & Hinton, 2012). There are two statistical 

ways of encoding data. The first is integer encoding, and the second is one-hot encoding. Integer 

encoding assigns an integer value typically to each unique category. For example, “red,” 

“green,” and “blue” are 1, 2, and 3, respectively (Krizhevsky, Sutskever & Hinton, 2012). For 

categorical variables where no ordinal correlation is recognized, integer encoding is not enough. 

In one-hot encoding, the integer encoded variable is discarded, and new binary variables are 

added for each unique integer value. There are three classes in the “color” variable, and 

consequently, three binary variables are required. A “1” value is inserted in the binary variable 

for the color, and “0” values are placed for the other colors. In our proposed machine learning 

algorithm, we used one-hot encoding to distinct integer encoding. This was followed by 

dividing the data into training, testing, and validation sets (Krizhevsky, Sutskever & Hinton, 

2012).  

 

Figure 5. Proposed Algorithm for CNN 

 TensorFlow data structures were defined for holding features and labels, including 

determining weights, hidden layers, biases, activation tools, placeholders for inputs, filters, 

filter size, and desired output. Another Tensor is defined to store a trained output model. This 
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was then followed by training of the proposed model with the training dataset. After training, 

the network will compute how different the trained model’s output is from the actual output. 

After reaching the minimum value, the trained model will yield testing accuracy by training it 

using the test data (Kiranyaz, Ince & Gabbouj, 2015). The cross-entropy function is also used 

to reduce the error to a minimum level. 

2.5 ECG Data 

We download ECG datasets from PhysioBank.com and kaggle.com for training and testing the 

proposed CNN and MLP algorithms. The MLP dataset size was 208x61, where total ECG 

signals were 208, and the total number of features and labels were 61. The first 60 columns 

contained features, and the last column contained the disease label for each data. However, the 

CNN dataset had dimensions of 26x543x60, following the same configuration as the MLP 

dataset, but this dataset consisted of 9 labels. Both algorithms consisted of 80% of the total data 

for training and 20% for testing. The training dataset was separated into 70% for actual training 

and 30% for validation. Each ECG vector in the dataset was 10 seconds long and contained 

only one rhythm class. A demonstration of the distribution for the ECG signals used for the 

training, testing, and validation process is shown in Figure 6 below. 

2.6 Training of Data 

We used batch sizes of 50 for the training stage with the standard backpropagation for stochastic 

learning. To update the weights, we used the following formula (Sufi & Khalil, 2010): 

𝑤௟ = ቀ1 − 
𝑛ఒ

𝑡𝑠
ቁ 𝑤௟ିଵ −  

𝑛

𝑥
 
𝜕𝑐

𝜕𝑤
 (2) 

where 

Additionally, the biases in the formula were updated through, 

𝑏௟ =  𝑏௟ିଵ −  
𝑛

𝑥
 

𝜕𝑐

𝜕𝑤
 (3) 

The deep neural learning rate was set to 0.002 for MLP and to 0.003 for CNN. 

 

Figure 6. ECG segments distribution in training and testing data set. 

 

𝒘 = weights 

l = layer number 

𝒏 = learning rate 

c = cost function 

𝒕𝒔 = total number of training samples 

𝒙 = batch size 

𝝀 = regulation parameter 



APPLICATION OF DEEP MACHINE LEARNING FOR CLASSIFICATION OF HEART DISEASES 

 

 
9 

2.7 Testing of Data 

After running each training epoch, the algorithms are expected to test the CNN and MLP 

algorithms to give test accuracy. The CNN and MLP algorithms have 500 and 1000 epochs, 

respectively. We applied 30% of the total training data, 80% of the original dataset, to the 

validation part after completing every epoch for better accuracy. Testing and validation dataset 

consisted of 20% of the total data used for testing, as described in previous sections (Ciresan et 

al., 2011). 

3 Results  

We concluded that CNN networks have a remarkable ability to extract all differentiable features 

invariant to local temporal and spectral variations. This has resulted in significant 

breakthroughs in higher accuracy results. The proposed CNN algorithm contained the following 

stages: i) data pre-processing; processing of ECG signals (so that automatic algorithm can 

understand different diseases), ii) stacking of max-pooling layers and convolution layers to 

extract the known features, iii) activation of the Softmax function and layering of a fully 

connected layer to predict the disease (Fernando et al., 2017). Table 1 shows the CNN layers’ 

parameters, the filter’s size, and output layer neuron size. To distinguish between regular sinus 

rhythm and irregular rhythm, we used MLP. To accomplish this, we used four hidden layers, 

each consisting of 60 neurons. The ReLU was then used to activate the first and last hidden 

layers, while two hidden middle layers employed a sigmoidal activation function. At the output 

layer, these were followed by the linear activation function. Additionally, a gradient descent 

optimizer was employed to lower the actual and trained network output error. When the 

parameters cannot be calculated analytically or by linear algebra, we realized that it was 

advantageous to implement a gradient descent optimizer. Figure 7 depicts the accuracy and 

mean square error graphs for the MLP algorithm. 

 After training the network with 1000 epochs yielded an accuracy of about 89% for the 

dataset from PhysioBank.net. Figure 8 depicts the visual confusion matrix for the training 

dataset. The confusion graph demonstrates true label vs. predicted label, where 0 stands for 

periodic ECG signal and 1 represents regular sinus rhythm. The dataset used here consisted of 

208 ECG data recordings, 97 of which are irregular (arrhythmia), and 111 represent a regular 

sinus rhythm. The 80% of the data applied for training, consisting of 165 ECG signals, 72 

describe arrhythmia, and 93 represent regular sinus rhythm. From this training dataset, 63 

arrhythmia and 81 regular sinus signals were rightfully classified by the algorithm, 

demonstrating a significant improvement in the accuracy of the MLP algorithm. 

 

Layers Type 
Size of Neurons 

(Output Layer) 

Filter Size of Each 

Layer 

0–1 Convolution (None, 1, 60, 1) 32 

1–2 Max Pooling (None, 1, 30, 1) 2 

2–3 Convolution (None, 1, 30, 1) 32 
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3–4 Max Pooling (None, 1, 15, 1) 2 

4–5 Convolution (None, 1, 15, 1) 32 

5–6 Max Pooling (None, 1, 8, 1) 2 

6–7 Convolution (None, 1, 8, 1) 32 

5–6 Fully connected layer 2048 - 

Table 1. Parameters for the proposed CNN algorithm 

  

(a) (b) 

Figure 7. Accuracy and mean square error for the MLP algorithm; (a) accuracy increases as the number 

of epochs increases; (b) error reduces with every epoch reaches the lowest after 1000 epochs. 

  
(a) (b) 

Figure 8. Confusion matrix (CM) 

 We then used the deep machine learning technique to create CNN to identify different 

cardiovascular diseases. We used the ReLU non-linear activation tool to activate the CNN 

alongside the gradient descent optimizer to minimize the error. This method proved to work 

great when the parameters could not be obtained analytically (Sainath, Mohamed & Kingsbury, 

2015). The architecture of the CNN for each convolution layer had 32 filters, and each filter 

had a size of 5 by 5. Figure 9 shows the accuracy and MSE error. On average, the accuracy 

improves with every epoch and, after about 500 epochs, reaches the max of 83.5%. The error 

reduces continuously with each epoch and gradually reaches a minimum. 

 We defined two variables as features and labels for the datasets. The proposed algorithm 

reshaped dimensions of features 1 by 4 because the convolution layer here only accepts 4-
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dimension vectors [28-31]. Upon completing the simulation using the deep learning platform 

HPC, the first three convolution layers were defined. The output of the first layer was fed into 

the max pooling layer to reduce the dimension of the vector to make the network faster and 

avoid overfitting. The same approach was followed for the second and third convolution layers 

as well. The result of the third pooling layer was then fed into the fully connected layer, 

followed by the Softmax layer so that the algorithm predicts the diseases [32]. Same as before, 

we showed the classification results of the algorithm by using a confusion matrix. Each cell 

consisted of the raw exemplars classified for the matching combination of expected and actual 

outputs. Figure 10 below shows a visual representation of the confusion matrix for the proposed 

CNN algorithm. We noticed many arrhythmias were confused with first-degree AV Block and 

ventricular bigeminy, but overall, the network gives a good prediction accuracy for the other 

diseases. We anticipate part of this is due to the ambiguous location of the exact onset and offset 

of the arrhythmia in the ECG vectors [33-35]. 

  

(a) (b) 

Figure 9. Accuracy and error of the proposed CNN 

(a) (b) 

Figure 10. CM of the CNN algorithm 
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4 Conclusions 

In this article, we used deep machine learning for automated arrhythmia classification, focusing 

on the recent trends in arrhythmia classification. Using St. Mary’s University Deep Learning 

Platform, we conducted heavy and complex simulations to measure the performance of the 

various arrhythmia classification and detection models. The proposed algorithms in this 

research were tested on ECG signals obtained from Physio.net and keggar.com and succeeded 

in detecting abnormal states in each signal with significant accuracy using MLP and CNN 

models. Our results showed that the proposed algorithms can accurately diagnose various heart 

diseases with 89% and 83% accuracy for the proposed MLP and CNN algorithms, respectively. 
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